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Abstract. The present study generalizes the model of extended stochastic systems with a field-dependent
kinetic coefficient [M. Ibanes, J. Garcia-Ojalvo, R. Toral, J.M. Sancho, Phys. Rev. Lett. 87, 020601 (2001)]
to systems with symmetric and asymmetric bistable potentials. It is found that in systems with a relax-
ational flow and a symmetric local potential, reentrant phase transitions can be observed. In the case of
an asymmetric local potential, a hysteresis-like behaviour in the order parameter appears. It is shown that
such phase transitions can be controlled by the constant that governs relaxation flow, noise intensity and
spatial coupling intensity.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion – 05.10.Gg
Stochastic analysis methods (Fokker-Planck, Langevin, etc.) – 64.60.-i General studies of phase transi-
tions

1 Introduction

It is well known that nonlinear systems that exhibit dis-
ordered behaviour in the absence of fluctuations can be
organized to sustain ordered states when an additional
amount of noise is added [1,5]. In recent decades, many
studies have focused on investigations of noise-induced
phenomena which demonstrate a counterintuitive role for
fluctuations, leading to self-organization effects, such as
noise-induced transitions in zero-dimensional systems (see
Ref. [1] and citations therein), stochastic resonance [2],
noise-induced spatial patterns and phase transitions [3–5],
and phase transitions induced by cross-correlations of
noises [6,7]. As will be discussed in this paper, one of
the most interesting effects is an ordering phase transi-
tion in extended systems, wherein the ordered phase (in a
thermodynamic sense) only results if a randomly fluctuat-
ing source is introduced into the dynamical system, which
must possess spatial degrees of freedom.

Most of the works concerning the above phenomena
have focused on the problems concerning the influence of
external noise. Analytically, numerically, and experimen-
tally it was found that an external noise source only plays
an organizing role if its amplitude depends on the field
variable (see Refs. [1,5,8,9]). This result was explained as
follows: in systems with fluctuations having a bounded fre-
quency spectrum, the ordered phase exists for a particular
range of the system parameters such as the control param-
eter, the noise intensity, and the intensity of spatial cou-
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pling (see Refs. [5,7,8]). Such reentrant phase transitions
correspond to cases wherein an increase in one of the above
parameters leads to an ordering dynamics once a first crit-
ical threshold is crossed, but after a second threshold is
passed, the system becomes disordered. The above reen-
trance appears as a result of the combined effect of the
nonlinearity of the system, the spectrally variant nature
of the noise, and the spatial coupling. If the properties
of the external fluctuations can be controlled in experi-
ments, then one can govern the system dynamics by mod-
ifying the noise intensity, its spectral bandwidth, or the
correlation properties of the fluctuations. From a funda-
mental point of view, such effects have a dynamic origin: in
the short-time limit, external fluctuations destabilize the
disordered homogeneous state. An analytic description of
extended systems subject to external fluctuations is pro-
vided with an approximate, known stationary distribution
function.

Recently, a new class of phase transitions was
found [10] in which fluctuations do not lead to instability
in the disordered phase (homogeneous mixture). Here, the
ordered (separated) phase appears due to the balance be-
tween the relaxing forces moving the system to the homo-
geneous state, and field-variable dependent fluctuations
pulling the system away from the disordered state. This
mechanism belongs to a set of entropy driven phase transi-
tions, which are the extension of noise-induced unimodal-
bimodal transitions in zero-dimensional systems [1]. The
origin of such phase transitions is due to a change in the
form of the nonequilibrium potential [10–12]. The nov-
elty of this phase transition lies in the fact that it arises
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entirely from an energy functional-like relaxation dynam-
ics. Its occurrence indicates the presence of two elements
in the stochastic dynamics: a field-dependent kinetic co-
efficient and the existence of a fluctuation dissipation re-
lation. It allows the interpretation of the corresponding
fluctuations as internal noise with intensity proportional
to the bath temperature. For such a class of stochastic
systems, the corresponding distribution function, free en-
ergy and an associated effective potential are known ex-
actly. Therefore, noise-induced phase transitions can be
analyzed without any dynamic reference.

Analytic work on these models has been fairly limited.
Phase transitions of this kind were studied under special
conditions with relaxation flow and a quadratic form of the
local potential. It was found that an increase in the noise
intensity, which plays the role of the bath temperature,
leads to the formation of an ordered phase [10,11]. Our
aims in this paper are therefore the following: (1) to gener-
alize the above picture of entropy-driven phase transitions
by considering systems with field-dependent relaxational
dynamics and a local potential of a more complicated
form, and (2) to investigate the possible reconstruction
of the system states by controlling the properties of the
relaxation flow and the noise intensity. Using mean field
theory, we will describe the mechanisms of reentrant phase
transitions in stochastic systems for which the local poten-
tial has a symmetrical form. For systems with an asym-
metric local potential, we explore phase transitions which
display hysteresis.

The paper is organized as follows. In Section 2, we re-
view the relaxational model and the theoretical approach
which are to be used in our considerations. Section 3 is
devoted to the analysis of phase transitions induced by
multiplicative noise in systems with both symmetrical and
nonsymmetrical forms of the local potential. We conclude
with a short summary in Section 4.

2 Theoretical tools

Let us consider the system described by the real scalar
field x = x(r, t) which obeys the Langevin equation

∂x

∂t
= −M(x)

δ

δx
F [x] + ζ(r, t). (1)

In the deterministic case, equation (1) corresponds to
the relaxation flow in the potential F [x] and the field-
dependent kinetic coefficient M(x) is interpreted as the
x-dependent mobility. The free energy functional F is as-
sumed to be of the form

F [x] =
∫

dr
(

V (x) +
D

4d
(∇x)2

)
, ∇ ≡ ∂

∂r
, (2)

where V (x) is the local potential, d is the spatial dimen-
sion, and D is a multiplicative constant. Regardless of
the form of the local potential V (x) as determined by the
model of the system (usually it has a polynomial con-
struction), an explicit form of M(x) can be found by as-
suming that the dynamics of the system are frozen in the

ordered/dense state (small M) and that fluctuations are
large in the disordered/diluted one (large M). In general,
M(x) appears in a coarse-grained derivation of master
equation [5,13] and can be a function of the spatial deriva-
tives of the field. However, in this paper we consider a non-
conservative situation, assuming M to be only a function
of the field x. The noise term ζ is taken to be Gaussian
with 〈ζ〉 = 0 for which the fluctuation dissipation relation
holds:

〈ζ(r, t)ζ(r′, t′)〉 = 2σ2
0M(x)δ(t − t′)δ(r − r′). (3)

Due to the satisfaction of equation (3), the noise term
in equation (1) represents internal fluctuations with an
intensity σ2

0 reduced to the bath temperature.
Stationary properties of the system can be stud-

ied with a help of stationary distribution Pst =
P([x(r)], t → ∞), obtained as a solution of the corre-
sponding Fokker-Planck equation. The standard way to
obtain the Fokker-Planck equation for spatially extended
systems requires the use of discrete space calculations to
avoid the occurrence of singularities [5,11,14]. Considering
the system in a d-dimensional, square lattice with a mesh
size �, instead of as the continuous equation (1) we get a
set of ordinary differential equations

dxi

dt
= −Mi

∂F

∂xi
+

√
Miζ̃i(t), (4)

where xi(t) ≡ x(ri, t), Mi ≡ M(xi) and 〈ζ̃i(t)ζ̃j(t′)〉 =
2σ2δijδ(t − t′), σ2 = σ2

0/�d, and index i = 1 . . .N labels
the cells. Using the discrete approximation of the gradient
|∇x|2, one can rewrite the free energy as follows

F =
N∑

i=1

⎡
⎣Vi +

D

4d�2

∑
j∈nn+(i)

(xj − xi)2

⎤
⎦, (5)

where nn+(i) indicates nearest neighbors in the positive
direction of each axis.

Following the standard approach and assuming the
Stratonovich interpretation, the corresponding Fokker-
Planck equation takes the form [15]

∂P ({xi}, t)
∂t

=
∑

i

∂

∂xi

(
Mi

∂F

∂xi
− σ2

2
∂Mi

∂xi

+σ2 ∂

∂xi
Mi

)
P ({xi}, t). (6)

Assuming no flux conditions, in the stationary case we
arrive at the distribution function

Pst({x}) ∝ exp
(−Ueff ({x})/σ2

)
,

Ueff ({x}) = F ({x}) +
σ2

2

N∑
i=1

ln Mi; (7)

in continuum space it takes the Boltzmann-Gibbs form

Pst[x] ∝ exp
(
−Ueff [x]

σ2

)
(8)
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where the effective internal energy functional is

Ueff [x] = F [x] + σ2Seff [x]. (9)

Here we introduce the effective entropy

Seff [x] =
1
2

∫
dr ln M(x) (10)

as defined through the mobility M(x). Because the free en-
ergy is not changed, the system states will be determined
solely by entropy variations, as caused by the multiplica-
tive character of the noise.

To investigate how entropy variations control the or-
dering processes, we use the Weiss mean field analysis
technique. In the framework of mean field theory, the gra-
dient term in equation (5) can be rewritten as follows:

∇2x → 2d

�2
(η − x)2, η ≡ 〈x〉. (11)

As a result, the effective potential acquires a dependence
on an unknown mean-field value η:

Ueff (x; η) = V (x) +
D

2�2
(η − x)2 +

σ2

2
ln M(x). (12)

The value η can be calculated as the solution of the self-
consistency equation

η =
∫

xPst(x; η)dx ≡ Φ(η), (13)

where

Pst(x; η) = Z−1(η) exp(−Ueff (x; η)/σ2). (14)

Here, Z satisfies the normalization condition, and η plays
the role of the order parameter.

From a physical viewpoint, the solution η = 0 defines
the disordered homogeneous phase, and the correspond-
ing distribution function is symmetrical with respect to
the origin x = 0. If the distribution function is asym-
metrical, then the order parameter takes on a nontrivial
value, η �= 0, and the system is ordered. To solve equa-
tion (13) the standard Newton-Raphson procedure is used.
One should note that the right hand side of the function
Φ(η), formally, can intersect the left hand side of the func-
tion η more than once. A number of intersections gives an
equal number of roots of the equation η = Φ(η) at the re-
lated values of the order parameter η. Generally, the num-
ber of roots depends on the form of the function Ueff (x; η)
and the related construction of the normalization constant
Z(η). In the case under consideration, if the local poten-
tial V (x) is of symmetrical form, i.e. V (−x) = V (x), then
two equivalent oppositely signed nontrivial solutions +η
and −η appears for a particular range of the control pa-
rameters. If the potential V (x) is asymmetrical or shifted
with respect to the origin x = 0, then one can expect more
than one different solutions η �= 0.

Fig. 1. Phase diagram for the system described by a local
potential as in equation (15).

3 Noise induced phase transitions

To proceed, let us assume that in the deterministic regime
the system states are characterized by three different sta-
tionary values x

(1)
0 , x

(2)
0 and x

(3)
0 , with x

(i)
0 �= x

(j)
0 , i �= j.

From a physical viewpoint, the field x can be interpreted
as the concentration or as the phase field which evolves ac-
cording to the deterministic force f(x) = −∑

i(x−x
(i)
0 ) =

−V ′(x). In our approach we use the local potential in the
form

V (x) =
x4

4
+

µ

3
x3 − ε

2
x2, (15)

where µ and ε are constants that control the system dy-
namics. The stationary states are thus: x

(1)
0 = 0, x

(2)
0 =

−a, x
(3)
0 = b. In our calculations, we use the more conve-

nient parameters µ = a−b, ε = ab. Following the standard
approach of the catastrophe theory, spinodals are defined
by the dependencies µs

0 = 0, µs± = ±2
√−ε, and binodals

are given by µb
± = ±3/2

√−2ε (see Fig. 1).
We assume the mobility M(x) to be of the form

M(x) =
1

1 + αx2
, α ≥ 0. (16)

Variations in the parameter α allow one to consider addi-
tive (α = 0) or multiplicative (α �= 0) noises, separately.

To show that the above fluctuations do not lead to
instability of the disordered state 〈x〉 ≡ η = 0, we perform
a linear stability analysis. Averaging equation (1) with
functions (15) and (16), the linear evolution equation for
the first statistical moment reads

∂〈x〉
∂t

= (ε − ασ2)〈x〉 +
D

2d
∆〈x〉. (17)

In the case of a monostable local potential (ε < 0) the
noise stabilizes the null state, whereas for ε > 0, it leads
to the instability of the state 〈x〉 = 0. A more detailed
description follows, and is provided using the mean field
theory.
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Fig. 2. Phase diagram of noise-induced transitions in a zero-
dimensional system (D = 0). Curves 1–3 correspond to values
α = 5, 10, 30.

3.1 Symmetric potential V(x)

In this subsection, we discuss the example of phase tran-
sitions in a symmetric bistable local potential, assuming
µ = 0, and using a form V (x) = x4/4 − εx2/2. In the
stationary deterministic regime (σ = 0) the system moves
into one of the two possible minima x±

(0) = ±√
ε.

The influence of noise also merits discussion. A repre-
sentation of noise-induced transitions (D = 0) is presented
as a phase diagram in Figure 2. The simplest case of ad-
ditive noise corresponds to the choice α = 0. Under this
condition, relaxation processes occur with the same relax-
ation time M−1 = const. in the vicinity of both dilute and
dense phases.

As a result, in this case the effective internal energy
Ueff has the same form as the free energy F . Additive
fluctuations smear the stationary distribution near its ex-
trema and do not change the system states as determined
by deterministic analysis. In the case of multiplicative fluc-
tuations α �= 0, the noise can play a crucial role. To investi-
gate noise-induced transitions, we analyze two conditions:
dUeff (x)/dx = 0 and d2Ueff (x)/dx2 = 0. The first of these
two cases gives a number of extrema in the effective po-
tential. A concurrent execution applying both conditions
allows one to find critical values for the control parame-
ters. The corresponding phase diagram for noise-induced
transition is shown in Figure 2. It is seen that in the case
of the monostable potential V (x), at ε < 0 an increase
in the noise amplitude σ leads to a noise-induced transi-
tion when the number of extrema of the effective potential
Ueff is changed. The critical value σ decreases with an in-
crease in the relaxation parameter α. It is an important
result that the bifurcation occurs at ε < 0, correspond-
ing to the monostable form of the local potential V (x).
The number of extrema of Ueff is changed only by the
x-dependent mobility M . In such a case, the above result
indicates that noise-induced transitions are driven by the
entropy variability.

Fig. 3. Order parameter η vs. control parameter ε at σ = 0.2
and D = 1.0. Numbers near curves correspond to values of the
parameter α.

Next, let us discuss the situation of noise-induced
phase transitions assuming D �= 0. An additive noise in-
fluence is outside the scope of this study, but we will use
it to compare the results obtained for multiplicative noise
(α �= 0). The behaviour of a system with multiplicative
noise and a monostable, quadratic local potential V (x),
was studied in reference [10]. It was shown that an in-
crease in the noise intensity σ2 leads to an ordering phase
transition. Here we address the case where the principal
role is played by the biquadratic nonlinearity in the lo-
cal potential V (x). Moreover, we aim to study the influ-
ence of the dissipation parameter α on phase transitions
in the system. Towards this aim, let us examine the or-
der parameter dependence on the control parameter ε at
different values of the coefficient α. The symmetry of the
effective potential is broken due solely to the spatial cou-
pling. Hence, positive and negative solutions of the self-
consistency equation differ in sign. As shown in Figure 3,
the behavior of the order parameter is predictable at ε > 0
when both the local and effective potentials are bistable.
Comparing curves with different values of the parameter
α, it is seen that an increase in α leads to ordering dynam-
ics with negative values ε that correspond to the monos-
table local potential V .

The behaviour of the order parameter η versus noise
amplitude σ is shown in Figure 4 for different values of the
control parameter ε. Here we plot only the positive solu-
tions of equation (13). It is seen that at positive values of
the control parameter ε (curve 1) the system is ordered
up to a critical threshold of the noise amplitude σ. If we
decrease the control parameter (curve 3), then the system
becomes ordered within a fixed range of the noise ampli-
tude σ. This result signifies that an increase in the noise
amplitude leads to the formation of the ordered state at
small σ, whereas at large σ, the fluctuations destroy the
order, thus restoring the symmetry of the stationary dis-
tribution. To describe the mechanism of the above reen-
trant phase transition, let us discuss the behaviour of the
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Fig. 4. Order parameter η vs. noise amplitude σ at D = 1.0
and α = 30. Curves 1, 2, 3 correspond to ε = 0.2, 0.0, –0.2,
respectively. At ε < 0 (curve 3) the ordered state is observed
inside the range σ ∈ [σ1, σ2].

Fig. 5. Stationary probability density Pst(x; η) for different
values of η and noise amplitude σ. Curves a–d correspond to
points (η magnitudes) in Figure 4.

stationary distribution at different magnitudes of the or-
der parameter η. Every solution η of the self-consistency
equation defines the form of the corresponding probabil-
ity density function shown in Figure 5. It is seen that in
the case of a monostable potential Ueff (x) with ε < 0 and
small values of the noise amplitude σ, the system is disor-
dered (see point a in Fig. 4). The corresponding probabil-
ity density function (curve a in Fig. 5) has a symmetrical
form with a maximum centered at the origin x = 0. If the
noise amplitude is increased, then the system becomes or-
dered (point b in Fig. 4). The corresponding probability
density function (curve b in Fig. 5) is characterized by a
shift of the single extremum in the positive direction of
the x-axis. A further increase in σ (see point c in Fig. 4)
leads to a genuine noise-induced transition, as the sta-
tionary distribution has a bimodal form (see curve c in

Fig. 6. Phase diagram of system with internal noise for D =
1.0 and for different values of the parameter α. Curves 1, 2
and 3 correspond to the cases of additive noise with α = 0 and
multiplicative noise with α = 10 and 30, respectively.

Fig. 5). Because the order parameter takes on a nontriv-
ial value, the bimodal distribution is asymmetric. At the
point d, the system is disordered; the corresponding distri-
bution is bimodal but has a symmetrical form (see curve
d in Fig. 5). Therefore, in the case of a symmetrical lo-
cal potential, the internal multiplicative noise leads to a
reentrant phase transition. During this phase transition,
the number of extrema of the probability density function
is changed. This implies the following mechanism for such
a reentrant phase transition: (i) below the first threshold
σ1 the system is disordered, the distribution is unimodal
and symmetrical with respect to the origin; (ii) inside the
domain σ ∈ [σ1, σ2] the system is ordered, characterized
by an asymmetrical distribution, and the number of ex-
trema of the distribution is changed due to a genuine
noise-induced transition; (iii) after the second threshold
σ2 is passed, the distribution is bimodal and symmetrical
with respect to the origin.

Next, let us discuss the phase diagram shown
in Figure 6. Here we plot the noise amplitude σ
versus the control parameter ε at different values
of the coefficient α. As Figure 6 shows, an in-
crease in the noise amplitude σ at destroys the
ordered state with η �= 0 α = 0 (lower curve) and
ε > 0, and as well, the symmetry of the effective poten-
tial Ueff is restored (η = 0). This is a typical example
of disorder-creating phase transitions caused by additive
noise (M = const.), as are observed in thermodynamic
systems. In the case of x-dependent mobility, the behav-
ior of the system is more complicated. In the case of a
double-well potential (ε > 0), the multiplicative noise
leads to disordering phase transitions, as expected. One
needs to point out that in the presence of thermal fluctu-
ations alone, the system can be only become ordered for
negative values of the control parameter ε. At small noise
amplitudes and ε < 0, the system is in the disordered
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Fig. 7. Phase diagram of the system for D = 1.0 and different
values of the control parameter ε. Curves 1 and 2 correspond
to ε = 0.2 and –0.2, respectively.

state, η = 0. An increase in σ leads to ordering dynamics
at σ1 ≤ σ ≤ σ2. A further increase in σ destroys the or-
dered state, restoring the symmetry of the system. Hence,
the multiplicative thermal noise yields reentrant phase
transitions if the system is characterized by a monostable
potential V (x). It is principally important that the disor-
dering processes — and hence the reentrance — are due
to the biquadratic nonlinearity in V (x), this despite the
fact that the ordering situation is related to the quadratic
term in V , as sown in study [10].

Next, we present a phase diagram to demonstrate the
manner in which thermal fluctuations can lead to an order-
ing of the system (see Fig. 7) It is seen that in the case of
a bistable local potential ε > 0, an increase in σ leads to
a disordering processes. Additionally, an increase in the
temperature destroys the ordered phase, thus restoring
the symmetry of the probability density function. In the
case of a monostable local potential (ε < 0) with an x-
dependent mobility, one observes the reentrant ordering
phase transition with an increase in the temperature σ2.

In Figure 8 we present a phase diagram in the (D, σ)
plane to show the influence of the parameter α on the bi-
furcation magnitudes of the spatial coupling intensity D
and the noise amplitude σ. One can see that in the case
of multiplicative noise (α �= 0) a doubly bounded domain
of ordered phase appears where a reentrant transition is
observed. An increase in the relaxation parameter α de-
creases the critical values of the spatial coupling intensity
D and extends the range of the noise amplitude in which
the ordered phase exists.

Therefore, in a symmetrical system, the thermal multi-
plicative noise leads to: (i) noise-induced transitions with
a changing number of extrema in the probability density
function; (ii) a shift of the critical point for noise induced
phase transitions; (iii) a reentrance phenomenon that oc-
curs for a monostable local potential V due to nonlinear-
ities of higher (even) order in V (x).

Fig. 8. Phase diagram of the system for ε = −0.2 (curves 1
and 2 correspond to values α = 10 and 30, respectively).

3.2 Asymmetric potential V(x)

In this subsection, we present a typical scenario of noise-
induced phase transitions in the systems characterized
by an asymmetric local potential (15). Considering the
change in the topology of the bifurcation curves as shown
in Figure 1, one can say that the presence of a cubic term
(µ �= 0) in the local potential V leads to the well-known
phenomenon of a phase transition with a symmetry-
breaking term (see Fig. 9a, cf. with Fig. 3). In this sit-
uation, an increase in |µ| shifts the bifurcation point for
solutions η < 0 toward large, and positive ε values. At
large |µ|, a hysteresis-like behavior in the semiaxis η > 0
is observed.

In continuing the investigation, we present a self-orga-
nization situation, considering only positive solutions η
which have a physical meaning. To this end, we assume
that the system can be in one of two minima placed at
x

(0)
0 = 0 or x corresponds to a maximum in V (x). Choos-

ing |a|, b ≤ 1 in equation (15), we localize the above ex-
trema to the semiaxis x ≥ 0. Continuing the study of
noise-induced phase transitions, we investigate the be-
haviour of the order parameter for ε < 0 and 0 < |µ| ≤ 2.
In Figure 9b, we present solutions of the self-consistency
equation at µ = −2 and for different values of the noise
amplitude σ and the parameter α. It is seen that an in-
crease in the noise amplitude σ or the relaxation param-
eter α suppresses the formation of a hysteresis loop and
shifts the position of the bifurcation points.

We now discuss the order parameter behaviour as a
function of µ for different values of the noise amplitude.
The behaviour of the phase transitions is intuitive in the
case of additive noise (α = 0), see Figure 10a. Here, at
small noise amplitudes, the system undergoes phase tran-
sitions in the following manner. An increase in the control
parameter µ (from a negative value towards zero) sup-
presses the order in the system until µ = 0, at which
point the system is characterized by the trivial value of
the order parameter η = 0. With a further increase in µ,
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Fig. 9. Order parameter η vs. ε for D = 1.0 (a) α = 10, curves
are plotted for different values of the control parameter µ; (b)
µ = −2.0, curves are plotted for different values of the noise
amplitude σ and the parameter α.

the system moves into an ordered state with a negative
value adopted by the order parameter. The corresponding
curves in Figure 10 all have point symmetry. An increase
in the noise amplitude σ completely suppresses bifurca-
tions, and as a result, we obtain the classical situation of
continuous variation in the order parameter. At α �= 0 the
sensitivity of the system to the influence of noise increases.
As Figure 10b shows, despite the topology of the bifurca-
tion curves being unchanged, one can see that bifurcation
processes disappear at small values of the noise intensity.
As in the previous case, an increase in the noise amplitude
suppresses the step-like behaviour of the order parameter
when µ varies. The above results illustrate the shift of the
bifurcation points due only to the control parameter, but
do not demonstrate the crucial role of multiplicative noise.

To determine the influence of multiplicative noise on
the ordering processes, we next discuss the behaviour of
the order parameter η in response to the noise amplitude
σ. In our treatment, we take µ = −2 and ε = −1 (spin-
odal in Fig. 1) and vary the noise amplitude σ, the re-

Fig. 10. Order parameter η vs. control parameter µ for D = 1
and ε = −1. Numbers near curves correspond to values of the
noise amplitude σ: (a) order parameter behaviour in the case of
additive noise influence (α = 0); (b) order parameter behaviour
in the case of multiplicative noise at α = 30.

laxation parameter α and the spatial coupling intensity
D. From this simplified treatment, one can conclude that
variation in D will only change the positions of the bifur-
cation points. One can see that the spatial coupling term
only appears in the free energy, and that the coefficient
D does not enter into any other terms in Ueff . However,
variations in the noise intensity σ2 and α can lead to more
complicated effect on the effective potential Ueff and hence
one can expect bifurcations when σ or α varies. Let us con-
sider solutions of the self-consistency equation as shown in
Figure 11. As previously mentioned, at α �= 0 and D �= 0
the system is asymmetric. As the local potential is initially
asymmetric, the order parameter has a nontrivial value at
α �= 0 and at D = 0. At α = 0 and D �= 0, we obtain
the additional term which breaks the symmetry of Ueff .
From Figure 11a, one can see that at α �= 0 and D = 0
(curve 1) the order parameter is always positive regard-
less of the choice of µ and ε. At D �= 0, spatial coupling
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Fig. 11. Order parameter η vs. noise amplitude σ for µ = −2
and ε = −1: (a) α = 5.0, curves are plotted for different values
of interaction intensity D; (b) D = 0.7, curves for different
values of the parameter α.

promotes the S-like behavior of the order parameter. This
result indicates that except for the stable solutions of the
self-consistency equation — shown as the outer branches
in Figure 11 — we obtain an unstable solution, as shown
by the middle curve. An increase in the relaxation param-
eter α yields the same hysteresis-like effect for the order
parameter (see Fig. 11b) as when the temperature varies.

To study the phase diagrams corresponding to this set
of conditions, we calculate the dependence of the spinodals
that correspond to the positions of the points σs1, σs2

in η(σ) (see Fig. 12) when the condition dη(σ)/dσ = ∞
is satisfied. To find the binodals, we have used the fol-
lowing algorithm. In the case of a unique solution η(0) of
the self-consistency equation (at σ /∈ [σs1, σs2]), then the
system is characterized by a unique probability density
function Pst = Pst(x; η(0)) which has a single maximum
centered on η(0). In the case of three possible solutions
of equation (13) at σ /∈ [σs1, σs2] then we have three cor-
responding probability density functions. Each probabil-
ity density is scaled to the corresponding magnitude of

Fig. 12. Order parameter dependence of the positions of criti-
cal values of the noise amplitude. These define the positions of
the spinodals σs1, σs2 and the binodal σc in the phase diagram
of Figure 13. Insert: Typical form of distribution functions for
different values of the order parameter at the points indicated
on the η(σ) curve.

the order parameter and is centered in its vicinity, i.e.:
P

(i)
st = Pst(x; η(i)), where i = 1, 2, 3 denotes different solu-

tions of equation (13), as shown in Figure 12. Each distri-
bution has a unique maximum with different magnitudes
and characterized by a unique dispersion 〈(x−〈x〉)2〉. Us-
ing the ergodicity theorem, one can conclude that the bin-
odal should correspond to the values σc in the (σ, α) plane
(see Fig. 13) if the corresponding maximal values of the
above distributions and the related dispersions are identi-
cal. At last, as follows from the phase diagrams shown in
Figure 13, a hysteresis loop can be formed if the param-
eter α is varied. Finally, we present the phase diagram
in the plane (σ, D) (see Fig. 13b). Comparing the corre-
sponding phase diagram of Figure 8, one can say that just
as in the case of a symmetrical local potential, with an in-
crease in the parameter α, the critical values of both the
spatial interaction intensity D and the noise amplitude σ
decrease. In other words, the ordered phase at large α can
be formed at small values of the spatial interaction in-
tensity D. Following catastrophe theory, one can conclude
that due to the asymmetric form of the local potential,
the above phase transitions are of the first kind.

4 Conclusions

We have considered two possible generalizations of
entropy-driven phase transitions in physical systems with
a relaxation flow and a field-dependent kinetic coefficient.
It is shown that the internal multiplicative noise induces
the reentrant behaviour of the order parameter in the case
of a monostable, symmetrical local potential. If the local
potential has an asymmetric from, then hysteresis in the
phase transitions are observed.



D.O. Kharchenko and A.V. Dvornichenko: Phase transitions induced by thermal fluctuations 103

Fig. 13. Phase diagrams for system with a nonsymmetrical
local potential and for µ = −2, ε = −1: (a) solid and dot-
ted lines are spinodals and binodal respectively, for D = 1.0;
dashed and dash-dotted lines are spinodals and binodal respec-
tively, for D = 0.85; (b) solid and dotted lines are spinodals
and binodal for α = 30, dashed and dash-dotted lines are spin-
odals and binodal for α = 10.

The mechanism of the reentrant phase transition is
as follows. At small noise intensities, the system is in the
disordered state, which is characterized by a unimodal
distribution symmetrical with respect to the origin. With
an increase in the noise amplitude, the symmetry of the
stationary distribution is broken due to the nonlinearity
of the system and of the spatial coupling. As a result, the
order parameter takes on a nontrivial value. A further
increase in the noise amplitude leads to a genuine noise-
induced transition, wherein an additional maximum in the
stationary distribution appears. Despite the fact that the
distribution is still asymmetric, the system is nevertheless

ordered. At large noise intensities, the symmetry of the bi-
modal distribution is restored, which trivializes the value
of the order parameter. The above processes can be con-
trolled by variations in the parameter that governs the
relaxation flow. In the case of an asymmetric local po-
tential, a system with a field-dependent kinetic coefficient
demonstrates a hysteresis-like behaviour. The positions of
the corresponding spinodals and binodals depend on the
noise intensity and on the relaxation parameter.

The case of a symmetric potential can be considered
as a model for reentrant behavior in magnetic systems
such as Roshelt salt, where temperature variations leads
to reentrant behaviour in the magnetization and in the
lattice structure. Models of systems with an asymmetric
potential, as considered in the work, are used to describe
ordering processes in phase field theory. We have shown
that a relaxation flow — with a filed-dependent kinetic co-
efficient which leads to entropy variations — serves as an
additional mechanism for ordering processes in thermody-
namic systems. In this Letter, only the main results of one
type of noise influence are presented. More detailed anal-
ysis should be done to investigate the role of correlations
between both internal and external fluctuating sources.
Another prospective direction is the study of the effects of
phase separation in the above systems but with conserva-
tive dynamics.
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